Liên hiệp các hội khoa học và kỹ thuật Việt Nam
Thứ năm, 12/05/2011 18:40 (GMT+7)

Bảy bài toán thiên niên kỷ

Người ta có thể thấy hơi ” kì ” : người ” ra đề ” không phải là một cơ quan chính thức như Liên hiệp quốc tế toán học hay Hội toán học Pháp, mà lại là một cơ sở tư nhân. Sự thật là ngày nay không có, không thể có một nhà toán học ” phổ quát ” nữa _ toán học đã trở thành quá mênh mông. Không còn minh chủ được quần hùng một lòng tôn vinh, thì lại càng nên tránh để nổ ra những cuộc xung đột giữa các môn phái. Vả lại, kiếm đâu ra mấy triệu $, nếu không gõ cửa tư nhân? Dù sao, Hội đồng khoa học của Viện Clay (tập hợp những chuyên gia kiệt xuất trong tất cả các ngành toán học, và đầu tiên phải kể tên Andrew Wiles, người đã chứng minh ” định lí cuối cùng của Fermat “) đã đánh liều tiếp nối con đường của Hilbert để nêu ra 7 bài toán cho thế kỉ 21.

1. Giả thuyết Poincaré Henri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincaré do ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20. Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ: bạn sẽ nhận được hai mảnh bóng vỡ. Làm lại như vậy với một cái phao (hay một vật hình xuyến): lần này bạn không được hai mảnh phao vỡ mà chỉ được có một. Trong hình học topo, người ta gọi quả bóng đối lập với cái phao, là một về mặt liên thông đơn giản. Một điều rất dễ chứng minh là trong không gian 3 chiều, mọi bề mặt liên thông đơn giản hữu hạn và không có biên đều là bề mặt của một vật hình cầu. Vào năm 1904, nhà toán học Pháp Henri Poincaré đặt ra câu hỏi: Liệu tính chất này của các vật hình cầu có còn đúng trong không gian bốn chiều. Điều kỳ lạ là các nhà hình học topo đã chứng minh được rằng điều này đúng trong những không gian lớn hơn hoặc bằng 5 chiều, nhưng chưa ai chứng minh được tính chất này vẫn đúng trong không gian bốn chiều.

2. Vấn đề P chống lại NP Với quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ. Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu tiên, vào năm 1971, đặt ra câu hỏi này một cách “toán học”. Sử dụng ngôn ngữ lôgic của tin học, ông đã định nghĩa một cách chính xác tập hợp những vấn đề mà người ta thẩm tra kết quả dễ hơn (gọi là tập hợp P), và tập hợp những vấn đề mà người ta dễ tìm ra hơn (gọi là tập hợp NP). Liệu hai tập hợp này có trùng nhau không? Các nhà lôgic học khẳng định P # NP. Như mọi người, họ tin rằng có những vấn đề rất khó tìm ra lời giải, nhưng lại dễ thẩm tra kết quả. Nó giống như việc tìm ra số chia của 13717421 là việc rất phức tạp, nhưng rất dễ kiểm tra rằng 3607 x 3808 = 13717421. Đó chính là nền tảng của phần lớn các loại mật mã: rất khó giải mã, nhưng lại dễ kiểm tra mã có đúng không. Tuy nhiên, cũng lại chưa có ai chứng minh được điều đó. “Nếu P=NP, mọi giả thuyết của chúng ta đến nay là sai” – Stephen Cook báo trước. “Một mặt, điều này sẽ giải quyết được rất nhiều vấn đề tin học ứng dụng trong công nghiệp; nhưng mặt khác lại sẽ phá hủy sự bảo mật của toàn bộ các giao dịch tài chính thực hiện qua Internet”. Mọi ngân hàng đều hoảng sợ trước vấn đề lôgic nhỏ bé và cơ bản này!

3. Các phương trình của Yang-Mills Các nhà toán học luôn chậm chân hơn các nhà vật lý. Nếu như từ lâu, các nhà vật lý đã sử dụng các phương trình của Yang-Mills trong các máy gia tốc hạt trên toàn thế giới, thì các ông bạn toán học của họ vẫn không thể xác định chính xác số nghiệm của các phương trình này. Được xác lập vào những năm 50 bởi các nhà vật lý Mỹ Chen Nin Yang và Robert Mills, các phương trình này đã biểu diễn mối quan hệ mật thiết giữa vật lý về hạt cơ bản với hình học của các không gian sợi. Nó cũng cho thấy sự thống nhất của hình học với phần trung tâm của thể giới lượng tử, gồm tương tác tác yếu, mạnh và tương tác điện từ. Nhưng hiện nay, mới chỉ có các nhà vật lý sử dụng chúng…

4. Giả thuyết Hodge Euclide sẽ không thể hiểu được gì về hình học hiện đại. Trong thế kỷ XX, các đường thẳng và đường tròn đã bị thay thế bởi các khái niệm đại số, khái quát và hiệu quả hơn. Khoa học của các hình khối và không gian đang dần dần đi tới hình học của “tính đồng đẳng”. Chúng ta đã có những tiến bộ đáng kinh ngạc trong việc phân loại các thực thể toán học, nhưng việc mở rộng các khái niệm đã dẫn đến hậu quả là bản chất hình học dần dần biến mất trong toán học. Vào năm 1950, nhà toán học người Anh William Hodge cho rằng trong một số dạng không gian, các thành phần của tính đồng đẳng sẽ tìm lại bản chất hình học của chúng…

5. Giả thuyết Riemann 2, 3, 5, 7, …, 1999, …, những số nguyên tố, tức những số chỉ có thể chia hết cho 1 và chính nó, giữ vai trò trung tâm trong số học. Dù sự phân chia các số này dường như không theo một quy tắc nào, nhưng nó liên kết chặt chẽ với một hàm số do thiên tài Thụy Sĩ Leonard Euler đưa ra vào thế kỷ XVIII. Đến năm 1850, Bernard Riemann đưa ra ý tưởng các giá trị không phù hợp với hàm số Euler được sắp xếp theo thứ tự. Giả thuyết của nhà toán học người Đức này chính là một trong 23 vấn đề mà Hilbert đã đưa ra cách đây 100 năm. Giả thuyết trên đã được rất nhiều nhà toán học lao vào giải quyết từ 150 năm nay. Họ đã kiểm tra tính đúng đắn của nó trong 1.500.000.000 giá trị đầu tiên, nhưng … vẫn không sao chứng minh được. “Đối với nhiều nhà toán học, đây là vấn đề quan trọng nhất của toán học cơ bản” – Enrico Bombieri, giáo sư trường Đại học Princeton, cho biết. và theo David Hilbert, đây cũng là một vấn đề quan trọng đặt ra cho nhân loại. Bernhard Riemann (1826-1866) là nhà toán học Đức. Giả thuyết Riemann do ông đưa ra năm 1850 là một bài toán có vai trò cực kỳ quan trọng đến cả lý thuyết số lẫn toán học hiện đại.

6. Các phương trình của Navier-Stokes Chúng mô tả hình dạng của sóng, xoáy lốc không khí, chuyển động của khí quyển và cả hình thái của các thiên hà trong thời điểm nguyên thủy của vũ trụ. Chúng được Henri Navier và George Stokes đưa ra cách đây 150 năm. Chúng chỉ là sự áp dụng các định luật về chuyển động của Newton vào chất lỏng và chất khí. Tuy nhiên, những phương trình của Navier-Stokes đến nay vẫn là một điều bí ẩn của toán học: người ta vẫn chưa thể giải hay xác định chính xác số nghiệm của phương trình này. “Thậm chí người ta không thể biết là phương trình này có nghiệm hay không” – nhà toán học người Mỹ Charles Fefferman nhấn mạnh – “Điều đó cho thấy hiểu biết của chúng ta về các phương trình này còn hết sức ít ỏi”.

7. Giả thuyết của Birch và Swinnerton-Dyer: Những số nguyên nào là nghiệm của phương trình ? có những nghiệm hiển nhiên, như . Và cách đây hơn 2300 năm, Euclide đã chứng minh rằng phương trình này có vô số nghiệm. Hiển nhiên vấn đề sẽ không đơn giản như thế nếu các hệ số và số mũ của phương trình này phức tạp hơn… Người ta cũng biết từ 30 năm nay rằng không có phương pháp chung nào cho phép tìm ra số các nghiệm nguyên của các phương trình dạng này. Tuy nhiên, đối với nhóm phương trình quan trọng nhất có đồ thị là các đường cong êlip loại 1, các nhà toán học người Anh Bryan Birch và Peter Swinnerton-Dyer từ đầu những năm 60 đã đưa ra giả thuyết là số nghiệm của phương trình phụ thuộc vào một hàm số f: nếu hàm số f triệt tiêu tại giá trị bằng 1 (nghĩa là nếu f(1)= 0), phương trình có vô số nghiệm. nếu không, số nghiệm là hữu hạn. Giả thuyết nói như thế, các nhà toán học cũng nghĩ vậy, nhưng đến giờ chưa ai chứng minh được… Người ta thấy vắng bóng ngành Giải tích hàm (Functional analysis) vốn được coi là lãnh vực vương giả của nghiên cứu toán học. Lý do cũng đơn giản : những bài toán quan trọng nhất của Giải tích hàm vừa mới được giải quyết xong, và người ta đang đợi để tìm được những bài toán mới. Một nhận xét nữa : 7 bài toán đặt ra cho thế kỉ 21, mà không phải bài nào cũng phát sinh từ thế kỉ 20. Bài toán P-NP (do Stephen Cook nêu ra năm 1971) cố nhiên là bài toán mang dấu ấn thế kỉ 20 (lôgic và tin học), nhưng bài toán số 4 là giả thuyết Riemann đã đưa ra từ thế kỉ 19. Và là một trong 3 bài toán Hilbert chưa được giải đáp ! Một giai thoại vui: Vài ngày trước khi 7 bài toán 1 triệu đôla được công bố, nhà toán học Nhật Bản Matsumoto (sống và làm việc ở Paris) tuyên bố mình đã chứng minh được giả thuyết Riemann. Khổ một nỗi, đây là lần thứ 3 ông tuyên bố như vậy. Và cho đến hôm nay, vẫn chưa biết Matsumoto có phải là nhà toán học triệu phú đầu tiên của thế kỉ 21 hay chăng… Trong số 7 bài toán trên có 1 bài đã được chứng minh. Đó là giả thuyết Poincaré. Cuối năm 2002, nhà toán học Nga Grigori Perelman tại Viện toán học Steklov ( St. Petersburg , Nga) công bố chứng minh Giả thuyết Poincaré. Và mới đây, vào tháng 6 năm 2004, tin tức về việc chứng minh giả thuyết Riemann của nhà toán học Louis De Branges ở Đại học Purdue cũng được công bố và hiện vẫn đang trong giai đoạn kiểm tra. Cũng xin lưu ý là trong số 7 bí ẩn toán học này, thì hai bài toàn này thuộc loại “xương” hơn cả (dĩ nhiên cái này cũng tương đối) thế nhưng nó lại (có thể) được chứng minh trước. Tuy nhiên có thể dễ dàng lý giải điều này, vì đây là hai bài toán có vai trò rất quan trọng trong cả lĩnh vực của nó lẫn trong toán học hiện đại nói chung (nhất là giả thuyết Riemann). Chúng ta cùng chờ xem sự thẩm định của các nhà toán học.

Xem Thêm

Thúc đẩy ứng dụng AI trong quản lý năng lượng - Giải pháp then chốt giảm phát thải nhà kính
Ngày 17/12, tại phường Bà Rịa, thành phố Hồ Chí Minh (TP.HCM), Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (VUSTA) phối hợp cùng Sở Công Thương TP.HCM, Trung tâm Chứng nhận Chất lượng và Phát triển Doanh nghiệp và Công ty Cổ phần Tập đoàn Vira tổ chức Hội thảo khoa học “Giải pháp thúc đẩy ứng dụng AI trong quản lý, sử dụng năng lượng hiệu quả nhằm giảm phát thải khí nhà kính”.
Thúc đẩy vai trò của Liên hiệp các Hội KH&KT địa phương trong bảo tồn đa dạng sinh học và thực thi chính sách
Trong hai ngày 12-13/11, tại tỉnh Cao Bằng, Liên hiệp các Hội KH&KT Việt Nam (VUSTA) phối hợp với Trung tâm Con người và Thiên nhiên (PanNature) và Liên hiệp các Hội KH&KT tỉnh Cao Bằng tổ chức Chương trình chia sẻ “Thúc đẩy vai trò của Liên hiệp các Hội KH&KT địa phương trong bảo tồn đa dạng sinh học và thực thi chính sách”.
Thúc đẩy ứng dụng thực tiễn của vật liệu tiên tiến trong sản xuất năng lượng sạch
Ngày 24/10, tại Trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Thành phố Hồ Chí Minh, Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (VUSTA) phối hợp với Hội Khoa học Công nghệ Xúc tác và Hấp phụ Việt Nam (VNACA) tổ chức Hội thảo khoa học “Vật liệu tiên tiến ứng dụng trong sản xuất nhiên liệu tái tạo và giảm phát thải khí nhà kính”.
Dựa vào thiên nhiên để phát triển bền vững vùng núi phía Bắc
Đó là chủ đề của hội thảo "Đa dạng sinh học và giải pháp dựa vào thiên nhiên cho phát triển vùng núi phía Bắc" diễn ra trong ngày 21/10, tại Thái Nguyên do Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (Vusta) phối hợp với Trung tâm Con người và Thiên nhiên (PANNATURE) phối hợp tổ chức.
Muốn công tác quy hoạch hiệu quả, công nghệ phải là cốt lõi
Phát triển đô thị là một quá trình, đô thị hoá là tất yếu khách quan, là một động lực quan trọng cho phát triển kinh tế - xã hội nhanh và bền vững. Trong kỷ nguyên vươn mình, quá trình đô thị hoá không thể tách rời quá trình công nghiệp hoá - hiện đại hoá đất nước...
Hội thảo quốc tế về máy móc, năng lượng và số hóa lần đầu tiên được tổ chức tại Vĩnh Long
Ngày 20/9, tại Vĩnh Long đã diễn ra Hội thảo quốc tế về Máy móc, năng lượng và số hóa hướng đến phát triển bền vững (IMEDS 2025). Sự kiện do Hội Nghiên cứu Biên tập Công trình Khoa học và Công nghệ Việt Nam (VASE) - hội thành viên của Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (VUSTA) phối hợp cùng Trường Đại học Sư phạm Kỹ thuật Vĩnh Long (VLUTE) tổ chức.
Ứng dụng công nghệ số toàn diện là nhiệm vụ trọng tâm của VUSTA giai đoạn tới
Ứng dụng công nghệ số toàn diện, xây dựng hệ sinh thái số là bước đi cấp thiết nhằm nâng cao hiệu quả quản trị và phát huy sức mạnh đội ngũ trí thức của Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (VUSTA). Qua đó cho thấy, VUSTA không chỉ bắt kịp xu thế công nghệ mà còn chủ động kiến tạo những giá trị mới, khẳng định vai trò tiên phong của đội ngũ trí thức trong thời đại số.

Tin mới

WFEO: Kênh kết nối cộng đồng kỹ sư quốc tế và cơ hội tham gia của cộng đồng kỹ sư Việt Nam
Trong một thế giới ngày càng phụ thuộc vào các giải pháp kỹ thuật để giải quyết những thách thức toàn cầu như biến đổi khí hậu, đô thị hóa và chuyển đổi số, vai trò của các kỹ sư trở nên then chốt hơn bao giờ hết. Đứng sau sức mạnh tập thể của hơn 30 triệu kỹ sư trên toàn cầu là Liên đoàn các Tổ chức kỹ sư Thế giới (World Federation of Engineering Organizations - WFEO).
Trung tâm SUDECOM nâng cao chuỗi giá trị nông nghiệp cho cộng đồng
Sáng ngày 29/12, Trung tâm Hỗ trợ Phát triển Bền vững Cộng đồng các Dân tộc Miền núi (Trung tâm SUDECOM) đã tổ chức hội nghị tổng kết dự án “Hỗ trợ mô hình sinh kế và nâng cao năng lực tiếp cận chuỗi giá trị nông nghiệp cho cộng đồng nhằm góp phần tăng thu nhập và bình đẳng giới tại 3 xã Lương Thịnh, Thác Bà, Yên Bình, tỉnh Lào Cai”.
VUSTA nhận Bằng khen của Bộ Ngoại giao vì những đóng góp tiêu biểu trong công tác đối ngoại nhân dân 2025
Phát biểu tại Hội nghị tổng kết công tác đối ngoại nhân dân 2025, Phó Chủ tịch VUSTA Phạm Ngọc Linh khẳng định đội ngũ trí thức KH&CN đã có những đóng góp tích cực vào những thành tựu chung của công tác đối ngoại nhân dân 2025. VUSTA cam kết tiếp tục phát huy vai trò nòng cốt trong đối ngoại nhân dân, góp phần thúc đẩy hợp tác quốc tế về KH&CN, ĐMST&CĐS trong giai đoạn phát triển mới của đất nước.
An Giang: Hoàn thiện khung hệ giá trị văn hóa trong kỷ nguyên mới
Ngày 26/12, Trường Chính trị Tôn Đức Thắng phối hợp với Ban Tuyên giáo và Dân vận Tỉnh ủy tổ chức hội thảo: “Xây dựng và phát huy hệ giá trị văn hóa, con người An Giang thúc đẩy phát triển kinh tế - xã hội của tỉnh trong kỷ nguyên mới”. TS. Hồ Ngọc Trường - Tỉnh ủy viên, Hiệu trưởng Trường Chính trị Tôn Đức Thắng; Bà Nguyễn Thị Hồng Loan - Phó Trưởng Ban TG&DV Tỉnh ủy đồng Chủ trì hội thảo
Đảng, Nhà nước tặng quà nhân dịp chào mừng Đại hội XIV của Đảng và Tết Bính Ngọ
Thủ tướng Phạm Minh Chính vừa ký công điện số 418 ngày 28/12/2025 về việc tặng quà của Đảng, Nhà nước nhân dịp chào mừng Đại hội đại biểu toàn quốc lần thứ XIV của Đảng và Tết Nguyên đán Bính Ngọ năm 2026 cho người có công với cách mạng, các đối tượng bảo trợ xã hội, hưu trí xã hội và đối tượng yếu thế khác.
Lào Cai: Hội nghị triển khai nhiệm vụ trọng tâm năm 2026
Chiều 28/12, Liên hiệp các Hội Khoa học và Kỹ thuật tỉnh tổ chức hội nghị Ban Chấp hành nhằm đánh giá công tác lãnh đạo, chỉ đạo thực hiện nhiệm vụ năm 2025; thảo luận, thống nhất phương hướng nhiệm vụ trọng tâm năm 2026 và quyết định một số nội dung theo thẩm quyền.
Vai trò nòng cốt, quy tụ trí tuệ, kết nối nguồn lực của VAA trong điều khiển và tự động hóa
Ngày 27/12 tại Hà Nội, Hội Tự động hóa Việt Nam (VAA) long trọng tổ chức Đại hội đại biểu toàn quốc lần thứ VI, nhiệm kỳ 2025-2030. Với chủ đề “Tiếp nối - Phát triển”, Đại hội thể hiện rõ định hướng kế thừa, đổi mới và quyết tâm của VAA trong bối cảnh đất nước bước vào giai đoạn phát triển mới, nơi khoa học - công nghệ và tự động hóa giữ vai trò then chốt.
Gia Lai: Liên hiệp các Hội Khoa học và Kỹ thuật tổng kết hoạt động năm 2025
Ngày 26/12/2025, tại phường Quy Nhơn, Hội nghị Ban Chấp hành Liên hiệp các Hội Khoa học và Kỹ thuật tỉnh Gia Lai (Liên hiệp hội) lần thứ III đã diễn ra với sự tham dự của đại diện lãnh đạo Ủy ban MTTQ Việt Nam tỉnh, các ủy viên Ban Chấp hành, đại diện các đơn vị thành viên Liên hiệp hội.