Liên hiệp các hội khoa học và kỹ thuật Việt Nam
Thứ ba, 10/05/2011 18:39 (GMT+7)

Giả thuyết Poincaré và Grigory Perelman

Giả thuyết Poincaré do nhà toán học lỗi lạc người Pháp Henri Poincaré--người khai sinh ra ngành Topology--đề xướng năm 1904, nội dung như sau:

"Nếu một đa tạp ba chiều compắc không có biên là đơn liên, thì nó đồng phôi với mặt cầu ba chiều."

Nôm na một chút, hai không gian tôpô là đồng phôi nếu có một song ánh liên tục từ không gian này vào không gian kia sao cho ánh xạ ngược cũng liên tục, nghĩa là hai không gian giống như nhau về mặt tôpô. Một đa tạp ba chiều không có biên là một không gian tôpô mà mỗi điểm có một lân cận đồng phôi với một lân cận của không gian Euclide ba chiều R^3, nghĩa là về mặt địa phương một đa tạp ba chiều không khác gì R^3. Một không gian tôpô là đơn liên nếu mỗi đường cong đóng liên tục trên đó đều có thể được "thắt" một cách liên tục thành một điểm, nghĩa là nó đồng luân liên tục với một điểm, nói cách khác nhóm cơ bản của không gian chỉ chứa phần tử đơn vị.

Giả thuyết tổng quát hơn cho đa tạp n-chiều được gọi là Giả thuyết Poincaré mở rộng.

Trong trường hợp n=2 người ta đã biết từ lâu và không quá khó để chứng tỏ rằng mặt cầu hai chiều là mặt không biên compắc duy nhất mà là đơn liên. Những mặt xuyến là không đơn liên vì chúng có những "lỗ" và do đó có những đường cong đóng không thể thắt lại được.

Những cố gắng để nghiên cứu Giả thuyết Poincaré mở rộng đã dẫn đến những tiến bộ to lớn trong ngành Tôpô và trong Toán học nói chung.

Năm 1960 nhà toán học lớn người Mỹ Stephen Smale đã chứng minh Giả thuyết Poincaré mở rộng cho mọi n lớn hơn hay bằng 5. Công cụ chủ yếu của ông là Lý thuyết Morse trong Tôpô vi phân. Smale đưọc trao giải Fields năm 1966. (Smale là người tham gia tích cực vào phong trào chống chiến tranh Việt Nam, cách đây vài năm đã sang thăm Việt Nam .)

Mãi đến năm 1982 trường hợp n=4 mới được giải quyết nhờ công của nhà toán học Mỹ Michael Freedman. Công cụ của ông lại hoàn toàn là Tôpô Hình học, nghĩa là nói chung không sử dụng các cấu trúc vi phân hay đại số. Freedman cũng được trao giải thưởng Fields năm 1986.

Đóng góp to lớn vào những công trình nghiên cứu dẫn đến các kết quả này và những tiếng bộ sau đó phải kể đến John Milnor (giải Fields 1966), John Stallings, Papakyriapoulos, Sergey Novikov (giải Fields 1970), Robion Kirby, Simon Donaldson (giải Fields 1986) và nhiều người khác. Những phương pháp khác nhau đã được sử dụng: Tôpô vi phân, Tôpô đại số, Tôpô hình học, và cả những ý tưởng từ vật lí lí thuyết.

Vào khoảng những năm cuối thập kỉ 1970 nhà toán học Mỹ William Thurston có những quan sát theo một hướng mới. Ông nhận thấy là trong trường hợp hai chiều mặt cầu là mặt duy nhất mà trên đó có thể đặt hình học elliptic (tổng ba góc trong một tam giác lớn hẳn hơn 180 độ; hai đường thẳng bất kì đều cắt nhau; độ cong của mặt là hằng số dương), trên mặt xuyến một lỗ có hình học Euclide (tổng ba góc trong một tam giác bằng 180 độ; qua một điểm ở ngoài một đường thẳng chỉ có một đường thằng song song với đường thẳng đã cho; độ cong của mặt luôn luôn bằng không); với tất cả các mặt xuyến còn lại ta có hình học hyperpolic (tổng ba góc trong một tam giác nhỏ hơn 180 độ; qua một điểm ở ngoài một đường thẳng có thể vẽ được vô số đường thằng song song với đường thẳng đã cho; độ cong của mặt là hằng số âm). Thurston tổng quát hoá quan sát này lên không gian ba chiều, một cách nôm na, mỗi đa tạp không biên compắc ba chiều đều có thể được cắt thành từng mảnh mà trên mỗi mảnh có một hình học duy nhất. Đây được gọi là Giả thuyết Hình học hoá; nó chứa Giả thuyết Poincaré như là trường hợp riêng. Thurston được tặng giải Fields năm 1982.

Giả thuyết Hình học hoá của Thurston mở ra một hướng mới để nghiên cứu Giả thuyết Poincaré. Vì độ cong của một đa tạp trơn được định nghĩa thông qua các đạo hàm bậc nhất và bậc hai nhất định (trong phép tính Vi Tích phân độ cong của một đường cong với toạ độ được tham số hóa được cho thông qua các đạo hàm bậc nhất và bậc hai của tọa độ) nên xuất hiện khả năng sử dụng những công cụ của Hình học vi phân, Giải tích và Phương trình đạo hàm riêng. Một chương trình nhằm chứng minh Giả thuyết Hình học hoá đã được đề ra bởi nhà toán học Mỹ Richard Hamilton vào đầu thập kỉ 1980.

Cũng cần nói rằng Giả thuyết Poincaré đã tiêu tốn nhiều nỗ lực không thành của nhiều nhà toán học tên tuổi; và những chứng minh sai (cũng như những "chứng minh" không được chú ý đến) đã từng được đưa ra.

Vào năm 2002 nhà toán học Nga Grigory Perelman bất ngờ công bố trên mạng Internet những bản thảo trong đó tuyên bố rằng những trở ngại kĩ thuật cuối cùng trong chương trình của Hamilton đã được vượt qua. Vì Perelman đã là một nhà toán học có uy tín và hướng tấn công của ông có tính thuyết phục cao nên bản thảo của ông nhận được sự quan tâm lớn. Nhiều nhóm các chuyên gia hàng đầu đã bắt tay vào kiểm tra công trình rất phức tạp của Perelman. Trong một thời gian dài không ai dám đứng ra đoan chắc là công trình của Perelman là đúng tuy rằng không có lỗi nghiêm trọng nào được phát hiện.

Đến hè năm nay 2006 thì ba nhóm độc lập với nhau đã công bố kết quả công việc kiểm tra công phu của mình và sự đồng thuận đã được hình thành trong các chuyên gia là Perelman đã chứng minh Giả thuyết Poincaré. Còn việc Perelman có chứng minh được toàn bộ Giả thuyết Hình học hoá hay chưa có lẽ còn chờ thêm thời gian.

Như vậy sau gần đúng một thế kỉ những công sức to lớn của nhiều thế hệ các nhà toán học nối tiếp nhau đã mang đến thành tựu huy hoàng là cuối cùng Giả thuyết của Poincaré, một trong những bài toán nổi tiếng nhất của Toán học, đã được chứng minh.

Giải thưởng Fields được coi là một trong những giải thưởng quan trọng nhất trong ngành Toán. Cứ bốn năm một lần tại Đại hội các nhà Toán học quốc tế giải này lại được trao cho không quá bốn nhà toán học dưới 40 tuổi được coi là xuất sắc nhất. Người được nhận giải sẽ được nhận một huy chương trên đó có chân dung Archimede và dòng chữ bằng tiếng Latin, tạm dịch là "Hãy vượt qua giới hạn tinh thần và thấu hiểu thế giới".

Grigory Perelman là một người khác thường. Ông sinh năm 1966 và đã từng là một trong ba người đạt điểm tuyệt đối trong kì thi Olympic Toán học quốc tế năm 1982 (một trong hai người còn lại là Lê Tự Quốc Thắng). Ông là một chuyên gia xuất sắc về hình học vi phân và đã được mời báo cáo tại Đại hội các nhà Toán học quốc tế năm 1994. Sau đó ông trở về làm việc tại viện toán Steklov ở Saint Petersburg của Nga và rất ít khi giao tiếp với thế giới bên ngoài. Ngay cả sau khi bất ngờ công bố công trình chấn động của mình ông vẫn từ chối hầu hết những lời mời đến thuyết giảng và hoàn toàn không giao thiệp với báo chí. Có vẻ Perelman cũng không có ý định gởi đăng các bản thảo của mình. Người ta đồn rằng Perelman không màng tiền tài lẫn danh vọng. Trước đây Perelman đã từng từ chối không nhận một giải thưỏng của hội Toán học châu Âu năm 1996, vì vậy người ta e ngại rằng chưa chắc gì ông sẽ chịu nhận giải Fields, và sự e ngại đó đã trở thành sự thật: Theo thông báo mới nhất Perelman đã từ chối giải Fields năm nay.

Giả thuyết Poincaré là một trong bảy "Bài toán Thiên niên kỉ" mà viện Clay, một tổ chức ở Mỹ trao giải. Người đầu tiên giải được một trong những bài toán này sẽ được giải thưởng là một triệu đôla! Sáu bài toán còn lại gồm có: P=NP, một bài toán trong lý thuyết tính toán; giả thuyết Hodge trong hình học đại số; phương trình Navier-Stokes trong phương trình đạo hàm riêng; giả thuyết Riemann trong lý thuyết số; giả thuyết Birch và Swinnerton-Dyer trong hình học đại số và lý thuyết số; và vấn đề lý thuyết Yang-Mill trong vật lí toán. Miêu tả chi tiết những bài toán này có trên trang web

http://www.claymath.org/millennium/ .

Xem Thêm

Thúc đẩy vai trò của Liên hiệp các Hội KH&KT địa phương trong bảo tồn đa dạng sinh học và thực thi chính sách
Trong hai ngày 12-13/11, tại tỉnh Cao Bằng, Liên hiệp các Hội KH&KT Việt Nam (VUSTA) phối hợp với Trung tâm Con người và Thiên nhiên (PanNature) và Liên hiệp các Hội KH&KT tỉnh Cao Bằng tổ chức Chương trình chia sẻ “Thúc đẩy vai trò của Liên hiệp các Hội KH&KT địa phương trong bảo tồn đa dạng sinh học và thực thi chính sách”.
Thúc đẩy ứng dụng thực tiễn của vật liệu tiên tiến trong sản xuất năng lượng sạch
Ngày 24/10, tại Trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Thành phố Hồ Chí Minh, Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (VUSTA) phối hợp với Hội Khoa học Công nghệ Xúc tác và Hấp phụ Việt Nam (VNACA) tổ chức Hội thảo khoa học “Vật liệu tiên tiến ứng dụng trong sản xuất nhiên liệu tái tạo và giảm phát thải khí nhà kính”.
Dựa vào thiên nhiên để phát triển bền vững vùng núi phía Bắc
Đó là chủ đề của hội thảo "Đa dạng sinh học và giải pháp dựa vào thiên nhiên cho phát triển vùng núi phía Bắc" diễn ra trong ngày 21/10, tại Thái Nguyên do Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (Vusta) phối hợp với Trung tâm Con người và Thiên nhiên (PANNATURE) phối hợp tổ chức.
Muốn công tác quy hoạch hiệu quả, công nghệ phải là cốt lõi
Phát triển đô thị là một quá trình, đô thị hoá là tất yếu khách quan, là một động lực quan trọng cho phát triển kinh tế - xã hội nhanh và bền vững. Trong kỷ nguyên vươn mình, quá trình đô thị hoá không thể tách rời quá trình công nghiệp hoá - hiện đại hoá đất nước...
Hội thảo quốc tế về máy móc, năng lượng và số hóa lần đầu tiên được tổ chức tại Vĩnh Long
Ngày 20/9, tại Vĩnh Long đã diễn ra Hội thảo quốc tế về Máy móc, năng lượng và số hóa hướng đến phát triển bền vững (IMEDS 2025). Sự kiện do Hội Nghiên cứu Biên tập Công trình Khoa học và Công nghệ Việt Nam (VASE) - hội thành viên của Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (VUSTA) phối hợp cùng Trường Đại học Sư phạm Kỹ thuật Vĩnh Long (VLUTE) tổ chức.
Ứng dụng công nghệ số toàn diện là nhiệm vụ trọng tâm của VUSTA giai đoạn tới
Ứng dụng công nghệ số toàn diện, xây dựng hệ sinh thái số là bước đi cấp thiết nhằm nâng cao hiệu quả quản trị và phát huy sức mạnh đội ngũ trí thức của Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (VUSTA). Qua đó cho thấy, VUSTA không chỉ bắt kịp xu thế công nghệ mà còn chủ động kiến tạo những giá trị mới, khẳng định vai trò tiên phong của đội ngũ trí thức trong thời đại số.

Tin mới

Đảng bộ Liên hiệp Hội Việt Nam: Kiểm điểm, đánh giá chất lượng Ban Chấp hành Đảng bộ năm 2025
Ngày 12/12, Đảng bộ Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (Liên hiệp Hội Việt Nam) tổ chức Hội nghị kiểm điểm đối với tập thể, cá nhân Ban Chấp hành Đảng bộ năm 2025. Đồng chí Phạm Ngọc Linh, Phó Bí thư Thường trực Đảng ủy, Phó Chủ tịch Liên hiệp hội Việt Nam chủ trì Hội nghị. Tham dự có đồng chí Phan Xuân Dũng, Chủ tịch Liên hiệp Hội Việt Nam cùng các đồng chí trong BCH Đảng bộ.
Chủ tịch Phan Xuân Dũng dẫn đoàn Việt Nam tham dự Triển lãm quốc tế về Sáng tạo khoa học công nghệ (SIIF 2025) tại Seoul
Từ ngày 3-7/12, Triển lãm quốc tế về khoa học công nghệ (SIIF 2025) được tổ chức tại thủ đô Seoul, Hàn Quốc. Theo lời mời của Hiệp hội Xúc tiến sáng chế Hàn Quốc (KIPA), Quỹ Sáng tạo kỹ thuật Việt Nam (VIFOTEC) đã thành lập đoàn tham gia Triển lãm quốc tế về khoa học công nghệ (SIIF 2025) do TSKH. Phan Xuân Dũng, Chủ tịch Liên hiệp Hội Việt Nam, Chủ tịch Quỹ VIFOTEC - làm trưởng đoàn.
Tìm giải pháp truyền thông đột phá cho phát triển khoa học công nghệ
Nghị quyết 57-NQ/TW xác định vị thế khoa học, công nghệ và chuyển đổi số là chìa khóa để Việt Nam vươn mình, trở thành quốc gia phát triển. Giới chuyên gia đưa ra lộ trình cụ thể giúp truyền thông chính sách thành hành động, từ xây dựng tòa soạn thông minh đến phát triển hệ sinh thái nội dung số.
Liên hiệp Hội Việt Nam tiếp nhận kinh phí ủng hộ đồng bào miền Trung, Tây Nguyên bị thiệt hại do mưa lũ
Chiều ngày 09/12, Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (Liên hiệp Hội Việt Nam) đã tổ chức buổi tiếp nhận kinh phí ủng hộ đồng bào miền Trung, Tây Nguyên bị thiệt hại do mưa lũ. Đây là hoạt động tiếp nối tinh thần của Lễ phát động ủng hộ đồng bào miền Trung, Tây Nguyên do Liên hiệp Hội Việt Nam tổ chức vào ngày 24/11 vừa qua.
Trí thức Việt Nam đồng hành cùng tương lai Xanh
Đội ngũ trí thức Việt Nam luôn đóng vai trò then chốt với những đóng góp trong nghiên cứu, chuyển giao công nghệ, đổi mới sáng tạo, tư vấn chính sách và truyền cảm hứng cộng đồng. Những chuyển động mạnh mẽ về khoa học môi trường, năng lượng sạch, kinh tế tuần hoàn và công nghệ xanh trong thời gian qua có dấu ấn đậm nét của đội ngũ trí thức khoa học và công nghệ nước ta…
Phát huy vai trò đội ngũ trí thức khoa học và công nghệ trong đột phá phát triển khoa học, công nghệ và đổi mới sáng tạo
Sáng ngày 05/12, Liên hiệp các Hội Khoa học và Kỹ thuật Việt Nam (VUSTA) phối hợp với Hội Nữ trí thức Việt Nam (VAFIW) tổ chức Hội thảo “Phát huy vai trò đội ngũ trí thức khoa học và công nghệ trong đột phá phát triển khoa học, công nghệ, đổi mới sáng tạo”.
Các nhà khoa học giao lưu, thuyết giảng tại trường đại học
Từ trí tuệ nhân tạo (AI), vật liệu bán dẫn hữu cơ, công nghệ y học đến biến đổi khí hậu và đa dạng sinh học… những buổi trò chuyện không chỉ mở rộng tri thức chuyên sâu mà còn truyền cảm hứng mạnh mẽ về hành trình chinh phục khoa học cho hàng nghìn sinh viên và giảng viên cả nước.